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Abstract: In the present paper, we study a regular triangle bi-directed transport network by the approach of the
operator semigroup theory and linear operator spectral theory. First we established a model of the partial differ-
ential equations for the transport problem. And then we prove the well-posedness of the network system. By the
detailed spectral analysis of the system operator, we prove that the spectrum of the system operator is composed
of isolated eigenvalue of finite multiplicity, all root vectors are incomplete in the state space. Finally, we discuss
some operation strategies for the transport networks based on the spectral distribution.
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1 Introduction

With the development of the modern technology and
the world economy, many mathematical models have
been developed to study the complex transport phe-
nomena, for instance, [1] introduced in detail the ex-
isting traffic flow model, which can perfectly repro-
duce stop-and-go traffic, phase transitions, local clus-
ters, traffic waves; [2] introduced the car-following
model (also called Gips Model) and [3] studied its
mathematical prosperities and signal control problem.
However, these models cannot be directly used to in-
vestigate network flow. In the 1950s James Lighthill
and Gerald Whitham in [4] and Richards in [5] pro-
posed to apply fluid dynamics concepts to traffic. In a
single road, this nonlinear model is based on the con-
servation of cars described by the scalar hyperbolic
conservation law. We refer to [6, 7] for more details
and comments on the single road models, [8, 9] for
an updated account of the theory of general hyper-
bolic conservation laws and to [10, 11] for a standard
introduction to the main ideas of numerical solution.
We observed that in all these classical works on traf-
fic flows, only a single road was taken into account.
More recently, in [12, 13, 14, 15], some models have
been proposed for traffic flow on highway networks.

Networks have been widely applied in classical

natural sciences, for example, food-webs, electrical
power grids, cellular and metabolic networks, chemi-
cal processes, neural networks, telephone call graph-
s, ecological webs, financial networks and the World-
Wide Web in recent years. Much progress has been
made in understanding the structure of these network-
s, and we refer to [16] for a survey on these devel-
opment. Several discrete or combinatorial interac-
tions in networks have been treated in graph theory,
mostly with applications to Markov process [17]. In
past decades the investigations of dynamic behavior
of the dynamic graphs in which the edges do not on-
ly link vertices but also serve as a transmission me-
dia on which time-and space-depending process take
place also have made greatly progress, we infer to
[18, 19, 20] and the book [21].

In the present paper, we also are interested in the
transport problem that will be described by the dy-
namical graphs. We study a triangular transport net-
work, in which two vertices are connected by parallel
edges, and on each edge the dynamic behavior of the
system is described by the partial differential equa-
tion. Obviously, such a network is different from that
in the works mentioned above. We mainly discuss the
structure property of the transport network by employ-
ing the operator semigroup theory [22, 23] and linear
operator spectral analysis approach [24]. From appli-
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cable point of view, we also consider the problem of
operating strategy for the traffic problem.

The rest is organized as follows: In section 2,
we establish the partial differential equation model for
the network system under consideration, and give the
complete description of the network at the junction. In
section 3, we prove well-posedness of the system by
linear operator semigroup theory, as a practice prob-
lem, we also consider the existence of the positive so-
lution of the system. In section 4, we carry out a com-
plete spectral analysis for the system operator. We
describe the spectral distribution and the multiplici-
ty of eigenvalue, and prove the incompleteness of the
eigenvectors. In section 5, we give a simple analysis
for operating strategy based on the dominant eigenval-
ue of A + B. In section 6, we conclude the result of
the present paper.

2 Mathematical modeling for a
transport problem

In this section we shall establish a mathematical mod-
el for triangle transport network in a region. Here we
mainly consider the non-fixed site operation strategy.
Such an operating strategy is similar to the mini bus
(or taxi) whose character is waving-stop. With this
operating strategy, the passenger can get on and get
off at anywhere in the transport line. It forms a trans-
port network. The most important character of this
operation strategy is that the number of passengers on
the transport line always varies at any time and at any-
where. Based on this fact, we choose the number of
passengers on each transport line as the main research
object. For simplicity, we also use linear equations to
describe the process.

2.1 Mathematical modeling

Suppose that aj , j = 1, 2, 3 are the transport sites in a
region (see Figure 1), and the distance between sites
ai and aj is 1, i, j = 1, 2, 3, which only is a normal-
ized form.

At first we consider the transport flow on the line
−−→a1a2. Suppose that the running speed of the vehicle
on this line is c12 that is a constant for simplicity. Let
s denote the distance from a point z on the line −−→a1a2
to a1 (see Figure 1). In what follows, we will identify
z and s.

We denote by X12(s, t) the number of passenger-
s on the vehicle at time t and at position s. Suppose
that the probability of passengers getting off at posi-
tion s is µ12(s), the probability of passengers getting
on is ν12(s). Then in the small time ∆t, the number

a2
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a1•PPPPPPPP•

������������•
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Figure 1: Triangular-shape transport line (the metric
graph)

change of passengers on the vehicle satisfies the fol-
lowing balance relation

X12(s+ c12∆t, t+∆t)−X12(s, t)

= (ν12(s)− µ12(s))X12(s, t)∆t+O(∆2t)

Hence, the mean change rate is given by

X12(s+ c12∆t, t+∆t)−X12(s, t)

∆t
= (ν12(s)− µ12(s))X12(s, t) +O(∆t).

Taking ∆t → 0, we get a partial differential equation

∂X12(s, t)

∂t
+ c12

∂X12(s, t)

∂s
= (ν12(s)− µ12(s))X12(s, t).

Next we consider number change of passengers on the
return vehicle, herein we regard a2 as start point of the
transport line. Denote by r a point on line −−→a2a1, which
is also the distance from the point to a2. Let X21(r, t)
denote the number of passengers on the vehicle at time
t and at position r. Assume that the running speed of
the return vehicle is c21; the probabilities of passen-
gers getting off and getting on at position r are µ21(r)
and ν21(r), respectively. Thus the number change of
passengers in the small time ∆t satisfies the relation

X21(r + c21∆t, t+∆t)−X21(r, t)

= (ν21(r)− µ21(r))X21(r, t)∆t+O(∆2t).

From above we get a partial differential equation

∂X21(r, t)

∂t
+ c21

∂X21(r, t)

∂r
= (ν21(r)− µ21(r))X21(r, t).

In a similar manner, we can discuss the other trans-
port lines. Similarly we can get the following partial
differential equations

∂X13(s,t)
∂t

+ c13
∂X13(s,t)

∂s
= (ν13(s)− µ13(s))X13(s, t),

∂X31(r,t)
∂t

+ c31
∂X31(r,t)

∂r
= (ν31(r)− µ31(r))X31(r, t),

∂X23(s,t)
∂t

+ c23
∂X23(s,t)

∂s
= (ν23(s)− µ23(s))X23(s, t),

∂X32(r,t)
∂t

+ c32
∂X32(r,t)

∂r
= (ν32(r)− µ32(r))X32(r, t).
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with s ∈ (0, 1), r ∈ (0, 1), where Xij(s, t) is the
number of passengers on the vehicle from ai to aj ,
cij is the running speed of the vehicle, and µij(r) and
νij(r) are the probabilities of passengers getting off
and getting on, respectively.

The partial differential equations above describe
the number change of passengers on the vehicle a-
long each transport line. In what follows, we con-
sider the number change of passengers at each site
aj , j = 1, 2, 3.

At each site, the passengers are composed of the
following four parts:

1) the passengers coming from the other sites;
2) the new passengers who come from outside of

the system (it is called the input);
3) the passengers departing for the other sites;
4) the passengers going out of the system (it is

called the output).
At the site a1, the numbers of arrival passenger-

s are X21(1, t) and X31(1, t) respectively; the input
number of passengers is u1(t). Therefore, the number
of all passengers coming in is

X21(1, t) +X31(1, t) + u1(t).

The numbers of passengers departing for the other
sites are X12(0, t) and X13(0, t) respectively, and the
number of passengers going out of the system is ξ1(t).
Assume that the site does not keep passengers and let
α1 be the probability of arrival passengers leaving the
system and β1 be the distribution rate of passengers
for different directions. Then we have

ξ1(t) = α1[X21(1, t) +X31(1, t)],

X12(0, t) = β1[(1−α1)(X21(1, t)+X31(1, t))+u1(t)],

and

X13(0, t) = (1− β1)[(1− α1)(X21(1, t) +X31(1, t)) + u1(t)].

Clearly, the relations meet the flow balance condition

X12(0, t) +X13(0, t) + ξ1(t) = X21(1, t) +X31(1, t) + u1(t).

At the site a2, the numbers of passengers depart-
ing for the other sites are X21(0, t) and X23(0, t),
the numbers of arrival passengers are X12(1, t) and
X32(1, t) respectively, the number of passengers from
outside is u2(t) and the number of passengers going
out of the system is ξ2(t). Let α2 be the probability
of arrival passengers leaving the system and β2 be the
distribution rate of passengers for different directions.
Thus we have

ξ2(t) = α2[X12(1, t) +X32(1, t)],

X21(0, t) = β2[(1−α2)(X12(1, t)+X32(1, t))+u2(t)],

and
X23(0, t) = (1− β2)[(1− α2)(X12(1, t) +X32(1, t)) + u2(t)].

Similarly, at the site a3, let α3 be the probability
of passengers going out of the system and β3 be the
distribution rate of passengers for different directions.
Then we have

ξ3(t) = α3[X13(1, t) +X23(1, t)],

X31(0, t) = β3[(1−α3)(X13(1, t)+X23(1, t))+u3(t)],

and
X32(0, t) = (1− β3)[(1− α3)(X13(1, t) +X23(1, t)) + u3(t)].

where u3(t) is the input of passengers and ξ3(t) is the
output of passengers.

In addition we assume that distributions of pas-
sengers on each transport line at the initial moment
are respectively

X12(s, 0) = x12(s), X21(r, 0) = x21(r),

X13(s, 0) = x13(s), X31(r, 0) = x31(r),

X23(s, 0) = x23(s), X32(r, 0) = x32(r).

Thus, a full description of mathematical model for op-
eration strategy of the non-fixed site is given by

∂X12(s,t)
∂t

+ c12
∂X12(s,t)

∂s
= (ν12(s)− µ12(s))X12(s, t),

∂X21(r,t)
∂t

+ c21
∂X21(r,t)

∂r
= (ν21(r)− µ21(r))X21(r, t),

∂X13(s,t)
∂t

+ c13
∂X13(s,t)

∂s
= (ν13(s)− µ13(s))X13(s, t),

∂X31(r,t)
∂t

+ c31
∂X31(r,t)

∂r
= (ν31(r)− µ31(r))X31(r, t),

∂X23(s,t)
∂t

+ c23
∂X23(s,t)

∂s
= (ν23(s)− µ23(s))X23(s, t),

∂X32(r,t)
∂t

+ c32
∂X32(r,t)

∂r
= (ν32(r)− µ32(r))X32(r, t),

X12(0, t) = β1[(1− α1)(X21(1, t) +X31(1, t)) + u1(t)],
X13(0, t) = (1− β1)[(1− α1)(X21(1, t) +X31(1, t)) + u1(t)],
X21(0, t) = β2[(1− α2)(X12(1, t) +X32(1, t)) + u2(t)],
X23(0, t) = (1− β2)[(1− α2)(X12(1, t) +X32(1, t)) + u2(t)],
X31(0, t) = β3[(1− α3)(X13(1, t) +X23(1, t)) + u3(t)],
X32(0, t) = (1− β3)[(1− α3)(X13(1, t) +X23(1, t)) + u3(t)],
X12(s, 0) = x12(s), X21(r, 0) = x21(r),
X13(s, 0) = x13(s), X31(r, 0) = x31(r),
X23(s, 0) = x23(s), X32(r, 0) = x32(r).

with s ∈ (0, 1), r ∈ (0, 1), observing that the equa-
tions have nonhomogeneous boundary conditions, we
can divide the system into two parts: one is a system
with homogeneous boundary conditions and nonzero
initial data, i.e.,

∂y12(s,t)
∂t

+ c12
∂y12(s,t)

∂s
= (ν12(s)− µ12(s))y12(s, t),

∂y21(r,t)
∂t

+ c21
∂y21(r,t)

∂r
= (ν21(r)− µ21(r))y21(r, t),

∂y13(s,t)
∂t

+ c13
∂y13(s,t)

∂s
= (ν13(s)− µ13(s))y13(s, t),

∂y31(r,t)
∂t

+ c31
∂y31(r,t)

∂r
= (ν31(r)− µ31(r))y31(r, t),

∂y23(s,t)
∂t

+ c23
∂y23(s,t)

∂s
= (ν23(s)− µ23(s))y23(s, t),

∂y32(r,t)
∂t

+ c32
∂y32(r,t)

∂r
= (ν32(r)− µ32(r))y32(r, t),

y12(0, t) = β1[(1− α1)(y21(1, t) + y31(1, t))],
y13(0, t) = (1− β1)[(1− α1)(y21(1, t) + y31(1, t))],
y21(0, t) = β2[(1− α2)(y12(1, t) + y32(1, t))],
y23(0, t) = (1− β2)[(1− α2)(y12(1, t) + y32(1, t))],
y31(0, t) = β3[(1− α3)(y13(1, t) + y23(1, t))],
y32(0, t) = (1− β3)[(1− α3)(y13(1, t) + y23(1, t))],
y12(s, 0) = x12(s), y21(r, 0) = x21(r),
y13(s, 0) = x13(s), y31(r, 0) = x31(r),
y23(s, 0) = x23(s), y32(r, 0) = x32(r).

(1)
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with s ∈ (0, 1), r ∈ (0, 1), and the other is a system
with nonhomogeneous boundary conditions and zero
initial data, i.e.,


∂z12(s,t)
∂t

+ c12
∂z12(s,t)

∂s
= (ν12(s)− µ12(s))z12(s, t),

∂z21(r,t)
∂t

+ c21
∂z21(r,t)

∂r
= (ν21(r)− µ21(r))z21(r, t),

∂z13(s,t)
∂t

+ c13
∂z13(s,t)

∂s
= (ν13(s)− µ13(s))z13(s, t),

∂z31(r,t)
∂t

+ c31
∂z31(r,t)

∂r
= (ν31(r)− µ31(r))z31(r, t),

∂z23(s,t)
∂t

+ c23
∂z23(s,t)

∂s
= (ν23(s)− µ23(s))z23(s, t),

∂z32(r,t)
∂t

+ c32
∂z32(r,t)

∂r
= (ν32(r)− µ32(r))z32(r, t),

z12(0, t) = β1[(1− α1)(z21(1, t) + z31(1, t)) + u1(t)],
z13(0, t) = (1− β1)[(1− α1)(z21(1, t) + z31(1, t)) + u1(t)],
z21(0, t) = β2[(1− α2)(z12(1, t) + z32(1, t)) + u2(t)],
z23(0, t) = (1− β2)[(1− α2)(z12(1, t) + z32(1, t)) + u2(t)],
z31(0, t) = β3[(1− α3)(z13(1, t) + z23(1, t)) + u3(t)],
z32(0, t) = (1− β3)[(1− α3)(z13(1, t) + z23(1, t)) + u3(t)],
z12(s, 0) = 0, z21(r, 0) = 0,
z13(s, 0) = 0, z31(r, 0) = 0,
z23(s, 0) = 0, z32(r, 0) = 0.

(2)

with s ∈ (0, 1), r ∈ (0, 1), in the present paper, we
mainly discuss the system (1).

2.2 Discussion

In the transport network, we have assumed that the
passengers can get on and get off at anywhere in the
transport lines. Since the parameters αj , j = 1, 2, 3
are the probabilities of passengers going out of the
system at site aj , we can assume that 0 < αj < 1,
j = 1, 2, 3 from the practice point of view. This mean-
s that there always exists the output of the system. The
parameters βi, j = 1, 2, 3 have similar property, but
they only describe the rate that the passenger can go
for different directions. The uj(t), j = 1, 2, 3, are the
input of the system, and are the number of passengers
at site aj from outside, so they are nonnegative.

We define number

N1(t) =

∫ 1

0
X12(s, t)ds, N2(t) =

∫ 1

0
X21(r, t)dr,

N3(t) =

∫ 1

0
X23(s, t)ds, N4(t) =

∫ 1

0
X32(r, t)dr,

N5(t) =

∫ 1

0
X31(s, t)ds, N6(t) =

∫ 1

0
X13(r, t)dr.

Clearly,
6∑

j=1
Nj is the total number of passengers in

the transport network at the moment t.
The model (1) describes the dynamic behavior

of the transport network without input. Its behavior
is determined mainly by the quantities

∫ 1
0 (νij(s) −

µij(s))ds. In this paper, we mainly discuss this case.
The model (2) gives the effect of input on the trans-
port network, including the effect of the quantities∫ 1
0 (νij(s)− µij(s))ds.

3 Well-posedness of the transport
system

In the present paper we discuss model (1). For sim-
plicity of notations, we set

x1(s, t) = y12(s, t), c1 = c12, µ1(s) = µ12(s), ν1(s) = ν12(s),
x2(s, t) = y21(s, t), c2 = c21, µ2(s) = µ21(s), ν2(s) = ν21(s),
x3(s, t) = y23(s, t), c3 = c23, µ3(s) = µ23(s), ν3(s) = ν23(s),
x4(s, t) = y32(s, t), c4 = c32, µ4(s) = µ32(s), ν4(s) = ν32(s),
x5(s, t) = y31(s, t), c5 = c31, µ5(s) = µ31(s), ν5(s) = ν31(s),
x6(s, t) = y13(s, t), c6 = c13, µ6(s) = µ13(s), ν6(s) = ν13(s)

and

ω11 = β1, ω22 = β2, ω23 = (1− β2),
ω16 = (1− β1), ω34 = (1− β3), ω35 = β3,
k1 = ω11(1− α1), k2 = ω22(1− α2), k3 = ω23(1− α2),
k4 = ω34(1− α3), k5 = ω35(1− α3), k6 = ω16(1− α1).

Then we have

∂xj(s,t)
∂t + cj

∂xj(s,t)
∂s = (νj(s)− µj(s))xj(s, t),

x1(0, t) = k1(x2(1, t) + x5(1, t)),
x2(0, t) = k2(x1(1, t) + x4(1, t))
x3(0, t) = k3(x1(1, t) + x4(1, t)),
x4(0, t) = k4(x3(1, t) + x6(1, t)),
x5(0, t) = k5(x3(1, t) + x6(1, t)),
x6(0, t) = k6(x2(1, t) + x5(1, t)),
xj(s, 0) = xj,0(s),
s ∈ (0, 1), t > 0, j = 1, 2 . . . , 6.

(3)
We introduce the vector-valued function

X(s, t) = (xj(s, t))
T

and define diagonal matrices

C = diag(cj),

V (s) = diag(νj(s)),

U(s) = diag(µj(s)).

with j = 1, 2, . . . , 6 and a transmission matrix

Γ =


0 k1 0 0 k1 0
k2 0 0 k2 0 0
k3 0 0 k3 0 0
0 0 k4 0 0 k4
0 0 k5 0 0 k5
0 k6 0 0 k6 0


Then the differential equations in (3) can be

rewritten into

∂X(s, t)

∂t
+ C

∂X(s, t)

∂s
= (V (s)− U(s))X(s, t)

and the boundary conditions in (3) can be written as

X(0, t) = ΓX(1, t).
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Thus (3) can be rewritten as a vector-valued partial
differential equations

∂X(s,t)
∂t + C ∂X(s,t)

∂s = [V (s)− U(s)]X(s, t)
X(0, t) = ΓX(1, t)
X(s, 0) = X0(s)

(4)
In what follows, we shall discuss the well-

posedness of the system (4). Based on the physical
meaning of the problem, we take the state space

X = (L1[0, 1])6,

For each F = (f1, f2, f3, f4, f5, f6) ∈ X, we define
the weighted norm

∥F∥X =
6∑

j=1

1

cj
∥fj∥L1[0,1].

Obviously, X is a Banach space.
We define an operator A in space X by

A = −C
d

ds
= diag(−cj

d

ds
), j = 1, 2, . . . , 6

with domain

D(A) = {F = (fj)j=1,2...6 ∈ (W 1,1[0, 1])6
∣∣ F (0) = ΓF (1)}.

Define an operator B : X → X by

B = V (s)− U(s) = diag(νj(s)− µj(s)), j = 1, 2, . . . , 6

with domain D(B) = X.
With the help of these notations, we can write the

equation (4) into an evolutionary equation in X{
d
dtX(t) = (A+B)X(t), t ≥ 0,
X(0) = X0 = (x10(s), x20(s), . . . , x60(s)).

(5)
First we have the following result.

Theorem 1. Let A be defined as before. Then the sys-
tem operator A is a closed and densely defined linear
operator in X.

This is a simple verification, we omit the detail.

Theorem 2. Let A be defined as before. Then the
following assertions hold

(I) A is a dissipative operator in X.
(II) It holds that C+ =

{
γ ∈ C

∣∣ ℜγ ≥ 0
}

⊂
ρ(A).

Proof. A direct verification shows that the dual space
of X is X∗ = (L∞[0, 1])6 with the norm for F ∈ X∗

∥F∥ = max {∥f1∥∞, ∥f2∥∞, · · · , ∥f6∥∞}

and for any P ∈ X and F ∈ X∗, the dual product is
defined as

⟨P, F ⟩X,X∗ = ⟨P, F ⟩c =
6∑

j=1

1

cj

∫ 1

0
pj(s)fj(s)ds.

Step 1. A is dissipative operator in X.
For any real P = (p1, · · · , p6) ∈ D(A), we de-

fine Q = (q1, · · · , q6) where qj = ∥P∥sign(pj), j =
1, 2, · · · , 6. Obviously, Q ∈ X∗ and

Q ∈ F(P ) =
{
Q ∈ X∗ ∣∣ ⟨P,Q⟩ = ||P ||2 = ||Q||2

}
.

In addition,

⟨AP,Q⟩c
∥P∥ = −

6∑
j=1

∫ 1
0

dpj(s)
ds sign(pj(s))ds

=
6∑

j=1
(|pj(0)| − |pj(1)|).

Using the boundary conditions

p1(0) = k1(p2(1) + p5(1)),
p2(0) = k2(p1(1) + p4(1)),
p3(0) = k3(p1(1) + p4(1)),
p4(0) = k4(p3(1) + p6(1)),
p5(0) = k5(p3(1) + p6(1)),
p6(0) = k6(p2(1) + p5(1)),

(6)

we have

|p1(0)|+ |p6(0)| ≤ (1− α1)(|p2(1)|+ |p5(1)|),
|p2(0)|+ |p3(0)| ≤ (1− α2)(|p1(1)|+ |p4(1)|),
|p4(0)|+ |p5(0)| ≤ (1− α3)(|p3(1)|+ |p6(1)|).

So we have

6∑
j=1

(|pj(0)| − |pj(1)|)

≤ −α1(|p2(1)|+ |p5(1)|)− α2(|p1(1)|
+|p4(1)|)− α3(|p3(1)|+ |p6(1)|)

< 0.

Therefore, we have ⟨AP,Q⟩
∥P∥ < 0. So, A is dissipa-

tive.
Step 2. Set C+ =

{
γ ∈ C

∣∣ ℜγ ≥ 0
}

, then C+ ⊂
ρ(A).

For any F ∈ X and γ ∈ C, we consider the resol-
vent equation (γI −A)P = F , that is

(γ + ci
d

ds
)pi(s) = fi(s), i = 1, 2 . . . , 6
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Obviously, the ordinary differential equations have a
general solution

pi(s) = pi(0)e
− γ

ci
s
+

1

ci

∫ s

0
fi(t)e

− γ
ci
(s−t)

dt, (7)

with i = 1, 2 . . . , 6, substituting (7) into (6) leads to
algebraic equations

p1(0)− k1[p2(0)e
− γ

c2 + p5(0)e
− γ

c5 ]

= k1[
1
c2

∫ 1
0 f2(t)e

− γ
c2

(1−t)
dt+ 1

c5

∫ 1
0 f5(t)e

− γ
c5

(1−t)
dt]

p2(0)− k2[p1(0)e
− γ

c1 + p4(0)e
− γ

c4 ]

= k2[
1
c1

∫ 1
0 f1(t)e

− γ
c1

(1−t)
dt+ 1

c4

∫ 1
0 f4(t)e

− γ
c4

(1−t)
dt]

p3(0)− k3[p1(0)e
− γ

c1 + p4(0)e
− γ

c4 ]

= k3[
1
c1

∫ 1
0 f1(t)e

− γ
c1

(1−t)
dt+ 1

c4

∫ 1
0 f4(t)e

− γ
c4

(1−t)
dt]

p4(0)− k4[p3(0)e
− γ

c3 + p6(0)e
− γ

c6 ]

= k4[
1
c3

∫ 1
0 f3(t)e

− γ
c3

(1−t)
dt+ 1

c6

∫ 1
0 f6(t)e

− γ
c6

(1−t)
dt]

p5(0)− k5[p3(0)e
− γ

c3 + p6(0)e
− γ

c6 ]

= k5[
1
c3

∫ 1
0 f3(t)e

− γ
c3

(1−t)
dt+ 1

c6

∫ 1
0 f6(t)e

− γ
c6

(1−t)
dt]

p6(0)− k6[p2(0)e
− γ

c2 + p5(0)e
− γ

c5 ]

= k6[
1
c2

∫ 1
0 f2(t)e

− γ
c2

(1−t)
dt+ 1

c5

∫ 1
0 f5(t)e

− γ
c5

(1−t)
dt]

where (p1(0), p2(0), . . . p6(0)) will be determined
later. Set D(γ) denote matrix



1 −k1e
− γ

c2 0

−k2e
− γ

c1 1 0

−k3e
− γ

c1 0 1

0 0 −k4e
− γ

c3

0 0 −k5e
− γ

c3

0 −k6e
− γ

c2 0

0 −k1e
− γ

c5 0

−k2e
− γ

c4 0 0

−k3e
− γ

c4 0 0

1 0 −k4e
− γ

c6

0 1 −k5e
− γ

c6

0 −k6e
− γ

c5 1


Clearly, the algebraic equations have a unique so-

lution if and only if detD(γ) ̸= 0. When detD(γ) ̸=
0, the algebraic equations have a unique solution
(p1(0), p2(0),
· · · , p6(0)) that implies that the resolvent equation
has a unique solution, and hence γ ∈ ρ(A). There-
fore, we have

σ(A) = {γ ∈ C
∣∣ detD(γ) = 0}.

A direct calculation gives

detD(γ)

= 1− k1k2e
−( 1

c1
+ 1

c2
)γ − k3k4e

−( 1
c3

+ 1
c4

)γ

−k5k6e
−( 1

c5
+ 1

c6
)γ − k1k3k5e

−( 1
c1

+ 1
c3

+ 1
c5

)γ

−k2k4k6e
−( 1

c2
+ 1

c4
+ 1

c6
)γ
,

(8)

When ℜγ ≥ 0,

| detD(γ)|
≥ 1− k1k2|e

−( 1
c1

+ 1
c2

)γ | − k3k4|e
−( 1

c3
+ 1

c4
)γ |

−k5k6|e
−( 1

c5
+ 1

c6
)γ | − k1k3k5|e

−( 1
c1

+ 1
c3

+ 1
c5

)γ |
−k2k4k6|e

−( 1
c2

+ 1
c4

+ 1
c6

)γ |
≥ 1− [k1k2 + k3k4 + k5k6 + k1k3k5 + k2k4k6]H(γ)

where

H(γ)

= max{|e−( 1
c1

+ 1
c2

)γ |, |e−( 1
c3

+ 1
c4

)γ |, |e−( 1
c5

+ 1
c6

)γ |,

|e−( 1
c1

+ 1
c3

+ 1
c5

)γ |, |e−( 1
c2

+ 1
c4

+ 1
c6

)γ |}.

Since 0 < αj < 1, j = 1, 2, 3, and ω11ω22+ω23ω34+
ω16ω35+ω11ω23ω35+ω16ω22ω34 = 1, and H(γ) ≤ 1
as ℜγ ≥ 0, so we have | detD(γ)| > 0. Therefore,{
γ ∈ C

∣∣ ℜγ ≥ 0
}
⊂ ρ(A). �

Theorem 3. Let A be defined as before, then A gen-
erates a C0 semigroup T (t) on X.

Proof. The semigroup theory of bounded linear op-
erators (see [22]) asserts that A generates a C0 semi-
group T (t)t∈R on X. �

Theorem 4. Let A and B be defined as before, then
A+B generates a C0 semigroup on X, and hence the
abstract Cauchy problem (5) has a unique solution.

Proof. It is easy to prove that B is a bounded oper-
ator, since B : X → X, ∥B∥ ≤ max

1≤j≤6
(|νj − µj |) =

1. The perturbation theory of semigroup asserts that
A + B also generates a C0 semigroup. Hence, the
abstract Cauchy problem (5) has a unique solution. �

Note that model (3) describes a practice problem,
the solution is the passenger number. So we have to
prove that the equation has a positive solution. To this
end, we set

X+ = {F = (fj) ∈ X
∣∣ fj(s) ≥ 0, ∀1 ≤ j ≤ 6},

Clearly, X+ is a positive cone, and (X,X+) is a Ba-
nach lattice (see [24]).

A bounded linear operator T on Banach lattice X
is said to be a positive operator if TX+ ⊂ X+. A C0

semigroup T (t) is said to be a positive semigroup if
for all t ≥ 0, T (t)X+ ⊂ X+ (see [23]).

The following theorem ensures the existence of
positive solution to (5).

Theorem 5. Let X, A and B be defined as before, and
T (t) be the C0 semigroup generated by A+ B. Then
T (t) is a positive semigroup on X. And hence the e-
quation has a unique positive solution for X0(s) ∈
X+.
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Proof. Let T (t) be the C0 semigroup generated by
A + B. According to the positive semigroup theory
(see [23]), we only need to show A + B − bI is a
dispersive operator in X and R(I−(A+B−bI)) = X,
where b = maxj maxs |νj(s)− µj(s)|. Since A+ B
generates a C0 semigroup that implies R(I − (A +
B − bI)) = X, we only need to show A + B − bI is
a dispersive operator in X.

For any real P = (p1, p2, · · · , p6) ∈ D(A +
B) = D(A), we set Q = ∥P∥(q1, · · · , q6), where
qj = sign+(pj), j = 1, 2, · · · , 6, and

sign+(pj) =

{
1, pj > 0,
0, pj ≤ 0.

Similarly, as in the proof of Theorem 2, we calculate
the value ⟨(A+B)P,Q⟩ as follows

⟨(A+B)P,Q⟩
∥P∥

= −
6∑

j=1

∫ 1
0

dpj(s)
ds sign+(pj(s))ds

+
6∑

j=1

1
cj

∫ 1
0 (νj(s)− µj(s))p

+
j (s)ds

≤ −α1(|p2(1)|+ |p5(1)|)− α2(|p1(1)|
+|p4(1)|)− α3(|p3(1)|+ |p6(1)|)

+maxj maxs |νj(s)− µj(s)|
6∑

j=1

∫ 1
0 p+j (s)ds

cj

< maxj maxs |νj(s)− µj(s)|
6∑

j=1

∫ 1
0 p+j (s)ds

cj

= b ⟨P,Q⟩
||P || .

So, ⟨(A+B−bI)P,Q⟩ < 0, this means that A+B is
dispersive. According to [22], A+B− bI generates a
C0 positive semigroup e−btT (t). So A+B generates
a C0 positive semigroup T (t). �

4 Spectral analysis of A+B

In this section, we shall carry out a complete spectral
analysis for operator A+B. We observe from Step 2
in the proof of Theorem 2 that for ℜγ > 0, R(γ,A)
is a compact operator on X, and B is a bounded linear
operator on X. So for λ ∈ ρ(A + B), R(λ,A + B)
also is a compact operator on X. Therefore, we have
the following result.

Theorem 6. Let A and B be defined as before. Then
A+ B is a resolvent compact operator, and hence its
spectrum of A+B consists of all isolated eigenvalues
of finite multiplicity, i.e., σ(A+B) = σp(A+B).

Based on the above result, we only need to discuss
the eigenvalue problem of A+B.

4.1 Eigenvalue problem
In this subsection, we study the eigenvalues of A+B
and its distribution. For simplicity, we denote vj(s) =
−[νj(s)− µj(s)], j = 1, 2, · · · , 6.

For λ ∈ C, we consider the eigenvalue problem
of A+B, i.e., (λI −A−B)P = 0, whose analytical
expression is given by



λpj(s) + cjp
′
j(s) + vj(s)pj(s) = 0, s ∈ (0, 1),

p1(0) = k1(p2(1) + p5(1)),
p2(0) = k2(p1(1) + p4(1)),
p3(0) = k3(p1(1) + p4(1)),
p4(0) = k4(p3(1) + p6(1)),
p5(0) = k5(p3(1) + p6(1)),
p6(0) = k6(p2(1) + p5(1)).

(9)
with j = 1, 2, · · · , 6, Obviously, the differential equa-
tions in (9) have a general solution

pj(s) = pj(0)e
− 1

cj

∫ s
0 [λ+vj(t)]dt

, j = 1, 2, · · · , 6.
(10)

Substituting (10) in the boundary conditions leads to
the following algebraic equations

G(λ)



p1(0)
p2(0)
p3(0)
p4(0)
p5(0)
p6(0)

 = 0 (11)

where G(λ) denote matrix
1 −k1E2(λ) 0

−k2E1(λ) 1 0
−k3E1(λ) 0 1

0 0 −k4E3(λ)
0 0 −k5E3(λ)
0 −k6E2(λ) 0

0 −k1E5(λ) 0
−k2E4(λ) 0 0
−k3E4(λ) 0 0

1 0 −k4E6(λ)
0 1 −k5E6(λ)
0 −k6E5(λ) 1



with Ej(λ) = e
− 1

cj

∫ 1
0 [λ+vj(s)]ds

(j=1,2. . . , 6). Clear-
ly, the algebraic equation (11) has a nonzero solution
if and only if the determinant of the coefficients matrix
vanishes, i.e.,|G(λ)| = 0. For simplicity, we set

v̂j =

∫ 1

0
vj(s)ds, j = 1, 2 . . . , 6.

Then we have

Ej(λ) = e
− 1

cj

∫ 1
0 [λ+vj(s)]ds

= e
− 1

cj
(λ+v̂j)

.
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with j = 1, 2 . . . , 6, a direct calculation gives

M(λ)
= |G(λ)|
= 1− k1k2E1(λ)E2(λ)

−k3k4E3(λ)E4(λ)− k5k6E5(λ)E6(λ)
−k1k3k5E1(λ)E3(λ)E5(λ)
−k2k4k6E2(λ)E4(λ)E6(λ)

(12)
Obviously, if λ is an zero of M(λ), then (11) has a
nonzero solution. Hence the nonzero functions given
in (10) forms a solution to (9). So λ also is an eigen-
value of A + B. Therefore, we only need to discuss
the zeros of M(λ).

Theorem 7. Let A and B be defined as before. Then
the following statements hold

1) The point spectrum of A + B, σp(A + B), is
given by

σp(A+B) = {λ ∈ C
∣∣ M(λ) = 0}.

2) There exists a positive constant h > 0 such that

σp(A+B) ⊂ {λ ∈ C
∣∣ −h ≤ ℜλ ≤ h}.

Proof. The first assertion is obvious, we only prove
the second assertion.

For ℜλ > 0, when ℜλ > −max{v̂j , j =
1, 2, · · · , 6}, we have ℜλ + v̂j > 0, which implies
limℜλ→∞Ej(λ) = 0. Therefore,

lim
ℜλ→+∞

M(λ) = 1.

Set

m = max{ 1

c1
+

1

c2
,
1

c3
+

1

c4
,
1

c5
+

1

c6
,

1

c1
+

1

c3
+

1

c5
,
1

c2
+

1

c4
+

1

c6
}.

For ℜλ < 0, we have

emλM(λ)

= emλ − k1k2e
−(

v̂1
c1

+
v̂2
c2

)
e
(m− 1

c1
− 1

c2
)λ

−k3k4e
−(

v̂3
c3

+
v̂4
c4

)
e
(m− 1

c3
− 1

c4
)λ

−k5k6e
−(

v̂5
c5

+
v̂6
c6

)
e
(m− 1

c5
− 1

c6
)λ

−k1k3k5e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
e
(m− 1

c1
− 1

c3
− 1

c5
)λ

−k2k4k6e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
e
(m− 1

c2
− 1

c4
− 1

c6
)λ
,

and hence
lim

ℜλ→−∞
emλM(λ) ≠ 0

So we can find a positive constant h and positive con-
stants d1 and d2 such that when |ℜλ| > h, it holds

d1e
mℜλ ≤ |M(λ)| ≤ d2.

The desired result follows from above inequality. �

Corollary 8. Let A and B be defined as before. Then
the spectrum of A+B distributes symmetrically with
respect to the real axis.

Note that M(λ) = M(λ̄) for all λ ∈ C. So the
result of Corollary 8 is obvious.

Corollary 9. Let A and B be defined as before. If all
v̂j = 0, then there exists a positive constant h > 0
such that

σp(A+B) ⊂ {λ ∈ C
∣∣ −h ≤ ℜλ < 0}.

Proof. If all v̂j = 0, then (12) precisely has the form
(8), the estimation in Theorem 7 gives |M(λ)| > 0 for
all ℜλ ≥ 0. The desired result follows. �

4.2 The geometric and algebraic multiplicity
of eigenvalue of A+B

In this subsection, we discuss the geometric and alge-
braic multiplicity of eigenvalue of A+ B. Let λ ∈ C
such that M(λ) = 0, i.e., If there is at least one five or-
der sub-matrix of the coefficient matrix of (11), whose
the determinant is nonzero, for example,
∣∣∣∣∣∣∣∣∣

1 −k1E2(λ) 0 0 −k1E5(λ)
−k2E1(λ) 1 0 −k2E4(λ) 0
−k3E1(λ) 0 1 −k3E4(λ) 0

0 0 −k4E3(λ) 1 0
0 0 −k5E3(λ) 0 1

∣∣∣∣∣∣∣∣∣ ≠ 0

then the geometric multiplicity of eigenvalue λ is one.
In what follows we always assume that the geometric
multiplicity of the eigenvalue of A+B is one. To ob-
tain the algebraic multiplicity of λ, we prove a general
result.

Theorem 10. Let bj , j = 1, 2, · · · ,m be a scaler
group of distinct nonzero complex number, aj ̸=
0, j = 1, 2, · · · ,m. Then the zeros of the exponen-
tial polynomial

p(z) =
m∑
j=1

aje
bjz − a0

are at most of multiplicity m.

Proof. Let λ ∈ C such that p(λ) = 0. We consider
the Taylor expansion of p(z) at λ

p(z)

= p(λ) +

m−1∑
k=1

p(k)(λ)

k!
(z − λ)k +

p(m)(λ)

m!
(z − λ)m +R(z)

where

p(k)(z) =
m∑
j=1

ajb
k
j e

bjz, k = 1, 2, · · · .
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If p(k)(λ) = 0, k = 0, 1, 2, · · · ,m − 1, since the ma-
trix 

1 1 1 · · · 1
b1 b2 b3 · · · bm
b21 b22 b23 · · · b2m
...

. . . · · · · · ·
...

bm−1
1 bm−1

2 bm−1
3 · · · bm−1

m


m×m

is regular, the algebraic equations
1 1 · · · 1
b1 b2 · · · bm
b21 b22 · · · b2m
...

. . . · · ·
...

bm−1
1 bm−1

2 · · · bm−1
m


m×m


a1eb1λ

a2eb2λ

a3eb3λ

...
amebmλ



=


a0
0
0
...
0


might have the solution

ake
bkλ =

a0
m∏

j≠k,
bj

∏
i ̸=j,i,j ̸=k

(bi − bj)

m∏
i ̸=j

(bi − bj)

, j = 1, 2, · · · ,m.

This means that λ might be a m-order zero of p(z).
But for any λ ∈ C, it cannot make

p(k)(λ) = 0, k = 1, 2, · · · ,m.

This is because the equations implies ajebjλ = 0 for
all j. Obviously, it is impossible. �
Remark 11. Theorem 10 shows that the zeros of p(λ)
are at most of m-order. If the scalar groups {bj , j =
1, 2, · · · ,m} and {aj , j = 1, 2, · · · ,m} satisfy cer-
tain conditions, for example, there exists an η such
that ηbj are integers, then the zeros of p(z) are sim-
ple.

Applying Theorem 10 to our model, we have the
following result.

Theorem 12. Let A and B be defined as before. For
λ ∈ σ(A + B), we denote by ma(λ) the algebraic
multiplicity of λ. Then the following assertions are
true.

1) supλ∈σ(A+B)ma(λ) ≤ 5;
2) If cj , j = 1, 2, 3 · · · , 6, satisfy the conditions

1

c1
+

1

c2
=

1

c3
+

1

c4
=

1

c5
+

1

c6
= b1 (13)

and
1

c1
+

1

c3
+

1

c5
=

1

c2
+

1

c4
+

1

c6
= b2 (14)

then, all eigenvalues of A+B are simple.

Proof. Note that

M(λ)

= 1− k1k2e
−(

v̂1
c1

+
v̂2
c2

)
e
−( 1

c1
+ 1

c2
)λ

−k3k4e
−(

v̂3
c3

+
v̂4
c4

)
e
−( 1

c3
+ 1

c4
)λ

−k5k6e
−(

v̂5
c5

+
v̂6
c6

)
e
−( 1

c5
+ 1

c6
)λ

−k1k3k5e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
e
−( 1

c1
+ 1

c3
+ 1

c5
)λ

−k2k4k6e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
e
−( 1

c2
+ 1

c4
+ 1

c6
)λ
,

it has the form as described in Theorem 10. Since
we have shown that the geometric multiplicity of λ is
one, so its algebraic multiplicity is equal to the order
of zero of M(λ). Applying Theorem 10 here m = 5,
we have ma(λ) ≤ 5. The first assertion follows.

If the conditions (13) and (14) hold, then 2b2 =
3b1, and M(λ) has the form

M(λ) = 1− a1e
−b1λ − a2e

− 3
2
b1λ

where

a1 = k1k2e
−(

v̂1
c1

+
v̂2
c2

)
+ k3k4e

−(
v̂3
c3

+
v̂4
c4

)

+k5k6e
−(

v̂5
c5

+
v̂6
c6

)

and

a2 = k1k3k5e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)

+k2k4k6e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
.

According to Theorem 10, the order of zeros of M(λ)
is at most two.

Set z = e−
b1
2
λ, then M(λ) = 0 is equivalent to

a2z
3 + a1z

2 − 1 = 0.

Note that a1 > 0 and a2 > 0. The algebraic equation
has three distinct zeros z1, z2, z3. Thus the zeros of
M(λ) are given by

λj,n = − 2

b1
ln |zj | −

2φj

b1
i− 4nπ

b1
i, j = 1, 2, 3,

for ∀n ∈ Z, where φj = arg(zj). Therefore, all
eigenvalues of A+B are simple. �

4.3 Incompleteness of eigenvectors of A+B

In this section, we shall discuss the completeness
problem of the spectrum of A + B. We say the spec-
trum of operator A+B is complete in X if the span of
its root vectors is dense in X. Otherwise, it is said to
be incomplete. In this subsection, we assume that all
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eigenvalues of A+B are simple. Thus the complete-
ness problem of the spectrum of A + B becomes the
dense problem of the span of its eigenvectors.

First, we find out the eigenvector of A+B corre-
sponding to λ ∈ σ(A+B).

Theorem 13. Let A and B be defined as before.
Assume that all eigenvalues of A + B are simple.
Then for any λ ∈ σ(A + B), then an eigenvector is
Φ(λ) = (pj(s, λ))j=1,2,··· ,6 where



p1(s) = k1e
−

∫ s
0

λ+v1(r)
c1

dr

p2(s) =
k1k2E1(λ)+k2k4k6E4(λ)E6(λ)

1−k3k4E3(λ)E4(λ)
e
−

∫ s
0

λ+v2(r)
c2

dr

p3(s) =
k1k3E1(λ)+k3k4k6E4(λ)E6(λ)

1−k3k4E3(λ)E4(λ)
e
−

∫ s
0

λ+v3(r)
c3

dr

p4(s) =
k4k6E6(λ)+k1k3k4E1(λ)E3(λ)

1−k3k4E3(λ)E4(λ)
e
−

∫ s
0

λ+v4(r)
c4

dr

p5(s) =
k5k6E6(λ)+k1k3k5E1(λ)E3(λ)

1−k3k4E3(λ)E4(λ)
e
−

∫ s
0

λ+v5(r)
c5

dr

p6(s) = k6e
−

∫ s
0

λ+v6(r)
c6

dr

(15)

Proof. We consider the eigenvalue problem of A+B,
i.e., (A + B)Φ(λ) = λΦ(λ), λ ∈ σ(A + B). That
is equivalent to the following equations have nonzero
solution:

−cjp
′
j(s)− vj(s)pj(s) = λpj(s), s ∈ (0, 1),

p1(0) = k1(p2(1) + p5(1)),
p2(0) = k2(p1(1) + p4(1)),
p3(0) = k3(p1(1) + p4(1)),
p4(0) = k4(p3(1) + p6(1)),
p5(0) = k5(p3(1) + p6(1)),
p6(0) = k6(p2(1) + p5(1)),

(16)
with j = 1, 2, · · · , 6, obviously,

pj(s) = pj(0)e
−

∫ s
0

λ+vj(r)

cj
dr
, j = 1, 2, · · · , 6

and (p1(0), p2(0), · · · , p6(0)) satisfies the following
algebraic equations



p1(0)− k1E2(λ)p2(0)− k1E5(λ)p5(0) = 0,
−k2E1(λ)p1(0) + p2(0)− k2E4(λ)p4(0) = 0,
−k3E1(λ)p1(0) + p3(0)− k3E4(λ)p4(0) = 0,
−k4E3(λ)p3(0) + p4(0)− k4E6(λ)p6(0) = 0,
−k5E3(λ)p3(0) + p5(0)− k5E6(λ)p6(0) = 0,
−k6E2(λ)p2(0)− k6E5(λ)p5(0) + p6(0) = 0.

(17)

Note that

p1(0) + p6(0) = (1− α1)(p2(0)E2(λ) + p5(0)E5(λ)),

p2(0) + p3(0) = (1− α2)(p1(0)E1(λ) + p4(0)E4(λ)),

p4(0) + p5(0) = (1− α3)(p3(0)E3(λ) + p6(0)E6(λ)).

Set

p1(0) = k1ξ, p6(0) = k6ξ, p2(0) = k2η,

p3(0) = k3η, p4(0) = k4µ, p5(0) = k5µ.

Then we have

k2E2(λ)η + k5E5(λ)µ = ξ, (18)
k1E1(λ)ξ + k4E4(λ)µ = η, (19)
k3E3(λ)η + k6E6(λ)ξ = µ. (20)

From (19) and (20) we get that

µ = k6E6(λ)+k1k3E1(λ)E3(λ)
1−k3k4E3(λ)E4(λ)

ξ,

η = k1E1(λ)+k4k6E4(λ)E6(λ)
1−k3k4E3(λ)E4(λ)

ξ.

Since λ ∈ σ(A+ B), that is, M(λ) = 0, substituting
above into (18) verifies the equality. Therefore,



p1(0) = k1ξ

p2(0) =
k1k2E1(λ)+k2k4k6E4(λ)E6(λ)

1−k3k4E3(λ)E4(λ)
ξ

p3(0) =
k1k3E1(λ)+k3k4k6E4(λ)E6(λ)

1−k3k4E3(λ)E4(λ)
ξ

p4(0) =
k4k6E6(λ)+k1k3k4E1(λ)E3(λ)

1−k3k4E3(λ)E4(λ)
ξ

p5(0) =
k5k6E6(λ)+k1k3k5E1(λ)E3(λ)

1−k3k4E3(λ)E4(λ)
ξ

p6(0) = k6ξ

Thus, Taking ξ = 1, we got the formula (15). �
A direct computation shows that the dual operator

(A+B)∗ of A+B is of the form

(A+B)∗ = A∗ +B∗ = diag(cj
d

ds
− vj(s)) (21)

with domain

D((A+B)∗)

=


Q = (q1, q2, · · · , q6),
qj , q

′
j ∈ (L∞[0, 1])6,j = 1, 2 . . . , 6,

q1(1) = q4(1) = k2q2(0) + k3q3(0),
q2(1) = q5(1) = k1q1(0) + k6q6(0),
q3(1) = q6(1) = k4q4(0) + k5q5(0).


(22)

Theorem 14. Let A and B be defined as before.
Then σ(A + B) = σ((A + B)∗) and for each λ ∈
σ((A+B)∗), the corresponding eigenvector Ψ(λ) =
(qj(s, λ))j=1,2,...,6 satisfying ⟨Φ(λ),Ψ(λ)⟩X,X∗ = 1 is
of the components



q1(s) =
k2E1(λ)E2(λ)+k3k5E1(λ)E3(λ)E5(λ)

1−k3k4E3(λ)E4(λ)
η̂e

1
c1

∫ s
0 [λ+v1(t)]dt

q2(s) = E2(λ)η̂e
1
c2

∫ s
0 [λ+v2(t)]dt

q3(s) =
k2k4E3(λ)E2(λ)E4(λ)+k5E3(λ)E5(λ)

1−k3k4E3(λ)E4(λ)
η̂e

1
c3

∫ s
0 [λ+v3(t)]dt

q4(s) =
k2E2(λ)E4(λ)+k3k5E3(λ)E4(λ)E5(λ)

1−k3k4E3(λ)E4(λ)
η̂e

1
c4

∫ s
0 [λ+v4(t)]dt

q5(s) = E5(λ)η̂e
1
c5

∫ s
0 [λ+v5(t)]dt

q6(s) =
k2k4E2(λ)E4(λ)E6(λ)+k5E5(λ)E6(λ)

1−k3k4E3(λ)E4(λ)
η̂e

1
c6

∫ s
0 [λ+v6(t)]dt

(23)

where

η̂ =
1− k3k4E3(λ)E4(λ)

M ′(λ)
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Proof. For λ ∈ σ((A + B)∗), the analytical expres-
sion of the eigenvalue problem (A + B)∗q = λq is
given by

cjq
′
j(s)− vj(s)qj(s) = λqj(s), s ∈ (0, 1),

q1(1) = q4(1) = k2q2(0) + k3q3(0),
q2(1) = q5(1) = k1q1(0) + k6q6(0),
q3(1) = q6(1) = k4q4(0) + k5q5(0).

with j = 1, 2, · · · , 6, obviously,

qj(s) = qj(0)e
1
cj

∫ s
0 [λ+vj(t)]dt

, j = 1, 2, · · · , 6.

and (q1(0), q2(0), . . . , q6(0)) satisfies the following
algebraic equations

q1(1) = q4(1) = k2q2(0) + k3q3(0),
q2(1) = q5(1) = k1q1(0) + k6q6(0),
q3(1) = p6(1) = k4q4(0) + k5q5(0).

Set q1(1) = q4(1) = ξ̂, q2(1) = q5(1) = η̂ and
q3(1) = q6(1) = µ̂, then

q1(0) = E1(λ)ξ̂, q4(0) = E4(λ)ξ̂,
q2(0) = E2(λ)η̂, q5(0) = E5(λ)η̂,
q3(0) = E3(λ)µ̂, q6(0) = E6(λ)µ̂,

and
ξ̂ − k2E2(λ)η̂ − k3E3(λ)µ̂ = 0 (24)

η̂ − k1E1(λ)ξ̂ − k6E6(λ)µ̂ = 0 (25)

µ̂− k4E4(λ)ξ̂ − k5E5(λ)η̂ = 0

Solving(24) and (25) yield

µ̂ =
k5E5(λ) + k2k4E2(λ)E4(λ)

1− k3k4E3(λ)E4(λ)
η̂

ξ̂ =
k2E2(λ) + k3k5E3(λ)E5(λ)

1− k3k4E3(λ)E4(λ)
η̂

Therefore,

q1(0) =
k2E1(λ)E2(λ)+k3k5E1(λ)E3(λ)E5(λ)

1−k3k4E3(λ)E4(λ)
η̂

q2(0) = E2(λ)η̂

q3(0) =
k2k4E3(λ)E2(λ)E4(λ)+k5E3(λ)E5(λ)

1−k3k4E3(λ)E4(λ)
η̂

q4(0) =
k2E2(λ)E4(λ)+k3k5E3(λ)E4(λ)E5(λ)

1−k3k4E3(λ)E4(λ)
η̂

q5(0) = E5(λ)η̂

q6(0) =
k2k4E2(λ)E4(λ)E6(λ)+k5E5(λ)E6(λ)

1−k3k4E3(λ)E4(λ)
η̂

(26)

To determine the coefficient η̂, using M(λ) = 0,
formula (15) and (23), we calculate the dual product
⟨Φ(λ),Ψ(λ)⟩c as follows

⟨Φ(λ),Ψ(λ)⟩c

=
6∑

j=1

1

cj

∫ 1

0
pj(s)qj(s)ds

=

6∑
j=1

1

cj
pj(0)qj(0)

=
1

c1
k1

k2E1(λ)E2(λ) + k3k5E1(λ)E3(λ)E5(λ)

1− k3k4E3(λ)E4(λ)
η̂

+
1

c2

k1k2E1(λ) + k2k4k6E4(λ)E6(λ)

1− k3k4E3(λ)E4(λ)
E2(λ)η̂

+
1

c3

k1k3E1(λ) + k3k4k6E4(λ)E6(λ)

1− k3k4E3(λ)E4(λ)

×
k2k4E3(λ)E2(λ)E4(λ) + k5E3(λ)E5(λ)

1− k3k4E3(λ)E4(λ)
η̂

+
1

c4

k4k6E6(λ) + k1k3k4E1(λ)E3(λ)

1− k3k4E3(λ)E4(λ)

×
k2E2(λ)E4(λ) + k3k5E3(λ)E4(λ)E5(λ)

1− k3k4E3(λ)E4(λ)
η̂

+
1

c5

k5k6E6(λ) + k1k3k5E1(λ)E3(λ)

1− k3k4E3(λ)E4(λ)
E5(λ)η̂

+
1

c6
k6

k2k4E2(λ)E4(λ)E6(λ) + k5E5(λ)E6(λ)

1− k3k4E3(λ)E4(λ)
η̂

=
η̂M ′(λ)

1− k3k4E3(λ)E4(λ)

where

M ′(λ)

=
(

1
c1

+ 1
c2

)
k1k2E1(λ)E2(λ)

+
(

1
c3

+ 1
c4

)
k3k4E3(λ)E4(λ)

+
(

1
c5

+ 1
c6

)
k5k6E5(λ)E6(λ)

+
(

1
c1

+ 1
c3

+ 1
c5

)
k1k3k5E1(λ)E3(λ)E5(λ)

+
(

1
c2

+ 1
c4

+ 1
c6

)
k2k4k6E2(λ)E4(λ)E6(λ)

Since λ ∈ σ(A + B) is a simple eigenvalue, it
holds that M ′(λ) ≠ 0. Therefore, taking

η̂ =
1− k3k4E3(λ)E4(λ)

M ′(λ)

we have ⟨Φ(λ),Ψ(λ)⟩c = 1. �
Let σ(A + B) = {λn, n ∈ Z} and let Φ(λ) and

Ψ(λ) be given as (15) and (23). Then it holds that

⟨Φ(λn),Ψ(λm)⟩c = δnm, ∀m,n ∈ Z.

Note that (1 − k3k4E3(λn)E4(λn)) = 0 will leads
to M(λn) ̸= 0. Without loss of generality we can
assume that

inf
λ∈σ(A+B)

|1− k3k4E3(λ)E4(λ)| > 0
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and
inf

λ∈σ(A+B)
|M ′(λ)| > 0.

A direct calculation gives

sup
n

||Φ(λn)|| < ∞, sup
n

||Ψ(λn)|| < ∞.

Since

E(λn, A+B)F = ⟨F, Ψ̂n⟩Φn, ∀F ∈ X,

so

||E(λn, A+B)|| ≤ ||Ψ̂n||||Φn|| < ∞, ∀n ∈ Z.

This property makes us wish to expand the solution of
the equation (5) according to its eigenvectors. How-
ever, the following result shows that it is impossible.

Theorem 15. Let A and B be defined as before. Then
the eigenvectors of A+B are not complete in X.

Proof. Set

Sp(A+B) = span{Φ(λn), n ∈ Z}.

In order to prove Sp(A + B) ≠ X, we only need to
prove that there exists F̂ = (f1, f2 . . . f6) ̸= 0 such
that F̂ (Φ(λn)) = 0, ∀n ∈ Z.

We take a vector F̂ as follows

f̂1(s) = k6e
1
c1

∫ s
0 v1(t)dtχ[0,

c1
c1+c6

]

f̂2(s) = 0

f̂3(s) = 0

f̂4(s) = 0

f̂5(s) = 0

f̂6(s) = −k1e
1
c6

∫ s
0 v6(t)dtχ[0,

c6
c1+c6

]

(27)

Obviously, F̂ = (f1, f2 . . . f6) ∈ X∗, and

⟨Φ(λn), F̂ ⟩c
= 1

c1

∫ 1
0 k1e

− 1
c1

∫ s
0 [λn+v1(t)]dtk6e

1
c1

∫ s
0 v1(t)dtχ[0,

c1
c1+c6

]ds

− 1
c6

∫ 1
0 k6e

− 1
c6

∫ s
0 [λn+v6(t)]dtk1e

1
c6

∫ s
0 v6(t)dtχ[0,

c6
c1+c6

])ds

= ω11k26

[
1
c1

∫ c1
c1+c6
0 e

−λn
c1

s
ds− 1

c6

∫ c6
c1+c6
0 e

−λn
c6

s
ds

]
= ω11k26

[∫ 1
c1+c6
0 e−λnrdr −

∫ 1
c1+c6
0 e−λnrdr

]
= 0

Therefore, Sp(A+B) ≠ X. So the spectrum of A+B
is incomplete in X. �

Remark 16. Since the spectrum of A + B is incom-
plete, we cannot expand the solution of (5) according

to its eigenvectors. Maybe it is possible that we can
write the solution in to the following form

X(t) =

∞∑
n=−∞

⟨X0,Ψ(λn)⟩ceλntΦ(λn) +R(t)

where R(t) is a remainder term. However, the first ter-
m is a series, we need to study its convergence. Here
we do not discuss this problem.

5 A simple analysis for operation s-
trategy

In this section, we simply discuss the operational s-
trategies for the transport networks.

5.1 Dominant eigenvalue of the system

First we discuss real eigenvalue of A+B.

Theorem 17. Let A and B be defined as before. Then
there exists unique a real eigenvalue λ0 of A+B that
satisfying the following property

1) for any λ ∈ σ(A+B), ℜλ ≤ λ0;
2) there is a positive eigenvector Φ(λ0).

Proof. For λ ∈ R, we consider the function M(λ) =
0. Since

lim
λ→∞

M(λ) = 1, lim
λ→−∞

M(λ) = −∞

and M ′(λ) > 0, ∀λ ∈ R, so there is unique a real zero
of M(λ), denote it λ0.

Note that

M(λ0) = 1− k1k2e
−(

v̂1
c1

+
v̂2
c2

)
e
−( 1

c1
+ 1

c2
)λ0

−k3k4e
−(

v̂3
c3

+
v̂4
c4

)
e
−( 1

c3
+ 1

c4
)λ0

−k5k6e
−(

v̂5
c5

+
v̂6
c6

)
e
−( 1

c5
+ 1

c6
)λ0

−k1k3k5e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
e
−( 1

c1
+ 1

c3
+ 1

c5
)λ0

−k2k4k6e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
e
−( 1

c2
+ 1

c4
+ 1

c6
)λ0 .

For any λ ∈ C, ℜλ > λ0, it holds that

|M(λ)| ≥ 1− k1k2e
−(

v̂1
c1

+
v̂2
c2

)
e
−( 1

c1
+ 1

c2
)ℜλ

−k3k4e
−(

v̂3
c3

+
v̂4
c4

)
e
−( 1

c3
+ 1

c4
)ℜλ

−k5k6e
−(

v̂5
c5

+
v̂6
c6

)
e
−( 1

c5
+ 1

c6
)ℜλ

−k1k3k5e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
e
−( 1

c1
+ 1

c3
+ 1

c5
)ℜλ

−k2k4k6e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
e
−( 1

c2
+ 1

c4
+ 1

c6
)ℜλ

> 0.

So for any λ ∈ σ(A+B), we have ℜλ ≤ λ0.
Since λ0 is real, and the term

1− k3k4E3(λ0)E4(λ0) > 0

so the functions pj(s), j = 1, 2, · · · , 6, given in (15)
are positive. The second assertion follows. �
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Theorem 18. Let A and B be defined as before, and
λ0 be the real eigenvalue of A+B. If the set

N = {
1

c1
+

1

c2
,
1

c3
+

1

c4
,
1

c5
+

1

c6
,
1

c1
+

1

c3
+

1

c5
,
1

c2
+

1

c4
+

1

c6
}

has greatest common divisor, denote it gcd(N), then
there exist eigenvalues of A+B on the line ℜz = λ0.
If N has not the great common divisor, there is no
other eigenvalue of A+B on the line ℜλ0.

Proof. We consider the points on the line ℜz = λ0,
i.e., z = λ0 + bi. If there exists a z such that M(z) =
0, then taking ℜM(z), we get

k1k2E1(λ0)E2(λ0) cos b(
1
c1

+ 1
c2

)

+k3k4E3(λ0)E4(λ0) cos b(
1
c3

+ 1
c4

)

+k5k6E5(λ0)E6(λ0) cos b(
1
c5

+ 1
c6

)

+k1k3k5E1(λ0)E3(λ0)E5(λ0) cos b(
1
c1

+ 1
c3

+ 1
c5

)

+k2k4k6E2(λ0)E4(λ0)E6(λ0) cos b(
1
c2

+ 1
c4

+ 1
c6

) = 1,

Note that M(λ0) = 0, so above equality holds if and
only if

cos b( 1
c1

+ 1
c2
) = cos b( 1

c3
+ 1

c4
) = cos b( 1

c5
+ 1

c6
)

= cos b( 1
c1

+ 1
c3

+ 1
c5
) = cos b( 1

c2
+ 1

c4
+ 1

c6
) = 1

Therefore, the set N has the greatest common divisor
gcd(N). In this case, the eigenvalues of A + B take
the form λ = λ0 + i 2π

gcd(N) . If there is no the greatest
common divisor of N , then there is no other spectrum
point of A+B on the line ℜz = λ0. �

5.2 Analysis of operation strategy

Now let us return to our model. We learn the practice
meaning for some qualities. First, the notation

v̂j =

∫ 1

0
(µj(s)− νj(s))ds

is the mean absorption rate, which indicates the rate
of passenger departure the line. If v̂j > 0, this means
that on this line the number of passengers getting on
is less than that getting off. If v̂j < 0, this means that
the number of passengers getting on is larger than that
getting off.

The notation 1
cj

is the time of the vehicle running
on the line. Since we have normalized the distance to
1 between site ai and aj , the cj is the speed of vehicle
running.

The real eigenvalue λ0 satisfies the equality

1 = k1k2e
−(

v̂1
c1

+
v̂2
c2

)
e
−( 1

c1
+ 1

c2
)λ0

+k3k4e
−(

v̂3
c3

+
v̂4
c4

)
e
−( 1

c3
+ 1

c4
)λ0

+k5k6e
−(

v̂5
c5

+
v̂6
c6

)
e
−( 1

c5
+ 1

c6
)λ0

+k1k3k5e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
e
−( 1

c1
+ 1

c3
+ 1

c5
)λ0

+k2k4k6e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
e
−( 1

c2
+ 1

c4
+ 1

c6
)λ0 .

(28)

Noting that

ω11ω22+ω23ω34+ω16ω35+ω11ω23ω35+ω16ω22ω34 = 1,

we can rewrite (28) into

ω11ω22[1− (1− α1)(1− α2)e
−(

v̂1
c1

+
v̂2
c2

)
e
−( 1

c1
+ 1

c2
)λ0 ]

+ω23ω34[1− (1− α2)(1− α3)e
−(

v̂3
c3

+
v̂4
c4

)
e
−( 1

c3
+ 1

c4
)λ0 ]

+ω16ω35[1− (1− α1)(1− α3)e
−(

v̂5
c5

+
v̂6
c6

)
e
−( 1

c5
+ 1

c6
)λ0 ]

+ω11ω23ω35

×[1− (1− α1)(1− α2)(1− α3)e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
e
−( 1

c1
+ 1

c3
+ 1

c5
)λ0 ]

+ω16ω22ω34

×[1− (1− α1)(1− α2)(1− α3)e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
e
−( 1

c2
+ 1

c4
+ 1

c6
)λ0 ]

= 0
(29)

Since we have assumed that αj ≠ 0, j = 1, 2, 3, this
means that there is a system output at each site, so
when

(1− α1)(1− α2)e
−(

v̂1
c1

+
v̂2
c2

)
< 1,

(1− α2)(1− α3)e
−(

v̂3
c3

+
v̂4
c4

)
< 1,

(1− α1)(1− α3)e
−(

v̂5
c5

+
v̂6
c6

)
< 1,

(1− α1)(1− α2)(1− α3)e
−(

v̂2
c2

+
v̂4
c4

+
v̂6
c6

)
< 1,

(1− α1)(1− α2)(1− α3)e
−(

v̂1
c1

+
v̂3
c3

+
v̂5
c5

)
< 1

then λ0 < 0 that denotes the defect rate. In this case,
the system decays exponentially.

For λ0, we discuss the distribution of passengers
in the system. To this end we calculate the eigenvector
given in (15). Since

6∑
j=1

||pj ||L1[0,1] =
6∑

j=1

pj(0)p̃j(λ0)

is the total number of passengers in the system, where

p̃j(λ0) =
∫ 1
0 e

−
∫ s
0

λ0+vj(r)

cj
dr
ds. Set

P (λ0)

1− k3k4E3(λ0)E4(λ0)
=

6∑
j=1

pj(0)p̃j(λ0).

Then the distribution is Φ̃(λ0) where


p1(s) =
k1(1−k3k4E3(λ0)E4(λ0))

P (λ0)
e
−

∫ s
0

λ0+v1(r)
c1

dr

p2(s) =
k1k2E1(λ0)+k2k4k6E4(λ0)E6(λ0))

P (λ0)
e
−

∫ s
0

λ0+v2(r)
c2

dr

p3(s) =
k1k3E1(λ0)+k3k4k6E4(λ0)E6(λ0)

P (λ0)
e
−

∫ s
0

λ0+v3(r)
c3

dr

p4(s) =
k4k6E6(λ0)+k1k3k4E1(λ0)E3(λ0)

P (λ0)
e
−

∫ s
0

λ0+v4(r)
c4

dr

p5(s) =
k5k6E6(λ0)+k1k3k5E1(λ0)E3(λ0)

P (λ0)
e
−

∫ s
0

λ0+v5(r)
c5

dr

p6(s) =
k6(1−k3k4E3(λ0)E4(λ0))

P (λ0)
e
−

∫ s
0

λ0+v6(r)
c6

dr

Set Ψ(λ0) is the eigenvector of (A + B)∗ satisfying
⟨Φ(λ0),Ψ(λ0)⟩c = 1.
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On the other hand, we can assume that v̂j < 0,
i.e., the number of passengers getting on is larger than
that getting off, then there is a certain possibility that
there are some spectral points located in the right-
half plane, which means the number of passengers in-
crease. In this case, we can adjust the cj to to make
the number of passengers steady. For example, let cj
be raised to c′j , then we have

k1k2e
−(

v̂1
c′1

+
v̂2
c′2

)
e
−( 1

c′1
+ 1

c′2
)λ0

+k3k4e
−(

v̂3
c′3

+
v̂4
c′4

)
e
−( 1

c′3
+ 1

c′4
)λ0

+k5k6e
−(

v̂5
c′5

+
v̂6
c′6

)
e
−( 1

c′5
+ 1

c′6
)λ0

+k1k3k5e
−(

v̂1
c′1

+
v̂3
c′3

+
v̂5
c′5

)
e
−( 1

c′1
+ 1

c′3
+ 1

c′5
)λ0

+k2k4k6e
−(

v̂2
c′2

+
v̂4
c′4

+
v̂6
c′6

)
e
−( 1

c′2
+ 1

c′4
+ 1

c′6
)λ0

= 1.
(30)

Compared with (28), we have changed the spectrum
distribution of the operator because of the change of
the cj .

Remark 19. The above theorems give spectral distri-
bution of A+B under a very special situation. Based
on the difference of the spectral distribution, we need
the different operation strategies:

(1) When all spectrum points are located on the
imaginary axis, which means that the system has an
almost period solution, there are certain numbers of
the passengers in the system. Therefore, the transport
company need not to adjust the numbers of vehicles.

(2) If there are some spectral points located in the
right-half plane, which means the numbers of the pas-
sengers are asymptotically increasing, then the trans-
port company should increase the numbers of buses to
balance the transport networks.

(3) If all spectral points except zero are located
in the left-half plane, which means the numbers of the
passengers are asymptotically decreasing, in this case
the system has a steady state P , then the transport
company should decrease suitably the numbers of bus-
es to ensure the effects of the transport networks.

6 Conclusion

In the present paper, we study a regular triangle bi-
directed transport network by the approach of the op-
erator semigroup theory and linear operator spectral
theory. First, we give a description for transport net-
works by using the partial differential equations, and
prove the well-posedness of the system. Then we
prove that the spectrum of the system operator is com-
posed of isolated eigenvalue of finite multiplicity, all
root vectors are incomplete in the state space. Finally,

we discuss some operation strategies for the transport
networks based on the spectral distribution. In this
paper, we only discussed some simple situations. Due
to the variety of parameters, we need to discuss much
more complex cases, that will be our next work.
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